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• p. 2: The 4th equation should read:
ϵij(q, ω) = ϵ

∗
ij(q, ω)

• p. 27: In Equation (2.3.24) a factor of 1
2
is missing in the second line. It now reads

Jcond · E = σ̂E · E ≈ −iω

4πµ1

N̂2E · E

≈ 1

2

[
2nkω

4πµ1

− i
ω

4πµ1

(
n2 − k2

)]
E2

0 (2.3.24)

• p. 27: There is also a factor 1
2
missing in the equation two lines under Equation

(2.3.24):

P =
1

2
σ1E

2
0

• p. 33: 7th line from the bottom, it should read ψt instead of ϕt

• p. 37: Equations (2.4.17) and (2.4.18) are incorrect; σ2 should be replaced by(
ω
4π

− σ2
)
. The correct formula (2.4.17) for the re�ectivity then reads:

R =

1 + 4π
ω

[
σ2
1 +

(
ω
4π

− σ2
)2]1/2 − (8π

ω

)1/2{[
σ2
1 +

(
ω
4π

− σ2
)2]1/2

+
(

ω
4π

− σ2
)}1/2

1 + 4π
ω

[
σ2
1 +

(
ω
4π
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+
(
8π
ω

)1/2{[
σ2
1 +

(
ω
4π

− σ2
)2]1/2

+
(

ω
4π

− σ2
)}1/2

The correct formula (2.4.18) for the phase shift is

tanϕr = −

(
8π
ω

)1/2{[
σ2
1 +

(
ω
4π

− σ2
)2]1/2 − ( ω

4π
− σ2

)}1/2

1− 4π
ω

[
σ2
1 +

(
ω
4π

− σ2
)2]1/2

The derivation starts fraom Equation (2.4.15):

R =
(1− n)2 + k2

(1 + n)2 + k2
=

1 + n2 + k2 − 2n

1 + n2 + k2 + 2n

and uses n(σ1, σ2), k(σ1, σ2) from Table 2.1 (µ1 = 1):
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[(
1− 4π

ω
σ2
)2

+
(
4π
ω
σ1
)2]1/2 − 2

{
1
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ω
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4π
ω
σ1
)2]1/2
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ω
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.



If we put the factor of 2 inside the square root given by the curled brackets { } and
arranging the prefactors as in the Book, this equation becomes

R =

1 + 4π
ω

[(
ω
4π

− σ2
)2

+ σ2
1

]1/2
−
(
8π
ω

)1/2{[( ω
4π

− σ2
)2

+ σ2
1

]1/2
+
(

ω
4π

− σ2
)}1/2

1 + 4π
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[(
ω
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+ σ2
1
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ω
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)2

+ σ2
1
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+
(

ω
4π
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.

Similar transformation have to be done for tanϕr.

• p. 42, before Equation (2.4.23): The electric �eld is not normal but parallel to the
surface. Thus the sentence should read:
ẐS was de�ned as the ratio of the electric �eld E parallel to the surface of a metal
to the total current density J induced in the material

• p. 44: In Equation (2.4.28) the sign of the imaginary part has to be negative:

ẐS =
(2π)2 µ1

c

δ0
λ0

(1− i)

• p. 50, Equation (3.1.10) - (3.1.12)
The derivation of Equation (3.1.12) is not straight forward, since the previous Equa-
tion (3.1.10) is not fully correct. The displacement �eld D used in this equation has
to be rede�ned, but eventually cancels in Equation (3.1.11).
We start with Maxwell's equations (2.2.7)

∇× E+
1

c

∂B

∂t
=0

∇ ·B =0

∇×H− 1

c

∂D

∂t
=
4π

c
J

∇ ·D =4πρ

and the material parameters (2.2.5)

D = ϵ1E = (1 + 4πχe)E = E+ 4πP,

and (2.26)
B = µ1H = (1 + 4πχm)H = H+ 4πM.

Now let us introduce a dielectric displacement D′ which also includes the change of
the magnetization:

∂D′ (r, t)

∂t
=
∂E (r, t)

∂t
+ 4π

∂P (r, t)

∂t
+ 4π∇×M



The Maxwell's equations then become

∇× E+
1

c

∂B

∂t
=0

∇ ·B =0

∇×B− 1

c

∂D′

∂t
=
4π

c
J

∇ ·D′ =4πρ

Let us now transform Maxwell's equations to Fourier space

q× E (q, ω)− ω

c
B (q, ω) =0

q ·B (q, ω) =0

i

µ1 (q, ω)
q×B (q, ω) + i

ω

c
ϵ1 (q, ω)E (q, ω) =

4π

c
J (q, ω) (1)

iϵ1 (q, ω)q · E (q, ω) =4πρ (q, ω)

Let us start in a di�erent way. We can split the tensor of the dielectric constant in
longitudinal and transverse components as done in (3.1.5)

(ϵ1)ij (q, ω) = ϵL1 (q, ω)
qi ◦ qj

q2
+ ϵT1 (q, ω)

[
δij −

qi ◦ qj

q2

]
,

and similarly all other dielectric vectors (3.1.6). This procedure is interesting for the
dielectric displacement

D′ (q, ω) =
q ·D′ (q, ω)

q2
q+

q×D′ (q, ω)

q2
× q.

With the help of the material equations we obtain

D′ (q, ω) = ϵL1 (q, ω)
q · E (q, ω)

q2
q+ ϵT1 (q, ω)

q× E (q, ω)

q2
× q.

This allows to simplify some of Maxwell's equations, for example (3.1.9d):

iϵL1 (q, ω)q · E (q, ω) = 4πρ (q, ω)

since we can immediately calculate the scalar product which is only the longitudinal
component:

q ·D′ (q, ω) = ϵL1 (q, ω)q · E (q, ω) .



The other equations are given in (3.1.9):

q× E (q, ω)− ω

c
B (q, ω) =0

q ·B (q, ω) =0

iq×B (q, ω) + i
ω

c
D′ (q, ω) =

4π

c
J (q, ω) (2)

Let us subtract Equations (1) from (2)

i

(
1− 1

µ1 (q, ω)

)
q×B (q, ω) + i

ω

c
D′ (q, ω)− i

ω

c
ϵ1 (q, ω)E (q, ω) = 0

In the case of harmonic waves, the magnetic and electric �elds are related by (2.2.17)

B (q, ω) =
c

ω
q× E (q, ω)

which we use for substitution of B(
1− 1

µ1 (q, ω)

)
q× [q× E (q, ω)] = −ω

2

c2
ϵ1 (q, ω)E (q, ω)− ω2

c2
D′ (q, ω)

If we eventually split this equation in the longitudinal and the transverse components
of the vector and tensor, we arrive at (3.1.11)[

q2c2

ω2

(
1− 1

µ1

)
+ ϵ1 (q, ω)

]
q× [q× E (q, ω)]− ϵ1 (q, ω) [q · E (q, ω)]q =

= ϵT1 (q, ω)q× [q× E (q, ω)]− ϵL1 (q, ω) [q · E (q, ω)]q,

which �nally leads to (3.1.12)

q2
(
1− 1

µ1

)
=
ω2

c2
[
ϵT1 (q, ω)− ϵL1 (q, ω)

]
.

• p. 72:
The Hamiltonian operator of Equation (4.1.1) describes the energy density per unit
volume. Thus it should be called Hamiltonian density.

• p. 74, Equation (4.1.10) should read:

A (q) =
1

Ω

∫
A(r) exp{−iq · r}dr

• p. 88, line 3:
The Coulomb gauge should read ∇A = 0, as correctly given in Equation (2.1.6)

• p. 95: In Equation (5.1.9) the sign of the denominator is incorrect. The formula



should read:

ϵ̂(ω) = ϵ1(ω) + iϵ2(ω) = 1−
ω2
p

ω2 + iω/τ

• p. 99, last line of the Figure caption:
The approximation shows deviations from the Drude model for frequencies above the
scattering rate γ.

• p. 110: The q = 0 limit calculation is wrong, but the result is correct. The complete
calculation reads:

σdc =
e2

4π3~

∫
τ (nE · vk) vk

vk
dSF

=
e2

4π3~
2π︸︷︷︸

ϕ - integration

τ

∫ π

0

dθ
1

3
vF︸︷︷︸

averaging

k2F sin θ︸ ︷︷ ︸
surface element

=
e2τ

2π2~
1

3
vF︸︷︷︸
~kF
m

k2F · 2

=
e2τ

π2

1

3

3π2N︷︸︸︷
k3F
m

=
Ne2

m
τ

• p. 111: The derivation of formula (5.2.19) is given here. Footnote 2 on p. 111 gives
the wrong integrals that are needed to obtain the result. So we give here the full
derivation. Starting from Equation (5.2.16):

σ̂(q, ω) =
2e2

(2π)3

∫ ∫
τ (nE · vk) vk

1− iωτ + ivk · qτ

(
−∂f

0

∂ε

)
dS

~vk
dε

We align the E-�eld in x-direction. Thus the conductivity in the x direction is of
interest. We put q in the z-direction. Multiplying the nominator and denominator
with i/τ simpli�es the equation. Besides, the integration is changed to an integration
over k via dε

~vk
= dk.

σ̂xx(q, ω) = − ie2

4π3

∫ kF

0

∫ π

0

∫ 2π

0

dk dθ dϕ k2 sin θ

v2k sin2 θ cos2 ϕ︷ ︸︸ ︷
(ex · vk,θ,ϕ)vk

i

τ
+ ω︸ ︷︷ ︸
:=ω̃

−vkq cos θ

(
∂f 0

∂ε

)

σ̂xx(q, ω) = − ie2v2k
4π3

∫ kF

0

∫ π

0

∫ 2π

0

dk dθ dϕ k2 cos2 ϕ
sin3 θ

ω̃ − vkq cos θ

(
∂f 0

∂ε

)
The ϕ - integration

∫ 2π

0
dϕ cos2 ϕ = π and the θ- integration

∫ π

0
sin3 θ

a+b cos θ
= a2−b2

b3
ln
(
a−b
a+b

)
+



2a
b
yields:

σ̂xx(q, ω) = − ie2v2k
4π2

∫ kF

0

dk k2
[
ω̃2 − v2kq

2

−v3kq3
Ln

{
ω̃ + vkq

ω̃ − vkq

}
+

2ω̃

v2kq
2

](
∂f 0

∂ε

)
.

Transforming back to an integral over ε, we can make use of the δ-function behavior
of the Fermi-Dirac distribution f 0 at zero temperature.

σ̂xx(q, ω) = − ie2v2k
4π2

∫ εF

0

dε

~vk
k2
[
2ω̃

v2kq
2
− ω̃2 − v2kq

2

v3kq
3

Ln

{
ω̃ + vkq

ω̃ − vkq

}](
∂f 0

∂ε

)
︸ ︷︷ ︸
−δ(ε−εF)

σ̂xx(q, ω) =
ie2

~kF
m︷︸︸︷
vF k2F

4π2~

[
2ω̃

v2Fq
2
− ω̃2 − v2Fq

2

v3Fq
3

Ln

{
ω̃ + vFq

ω̃ − vFq

}]
We can change the nominator and denominator in the logarithm argument according
to Ln (z) = −Ln (z−1), to:

σ̂xx(q, ω) =
ie2

3π2N︷︸︸︷
k3F

4π2m

[
2ω̃

v2Fq
2
+
ω̃2 − v2Fq

2

v3Fq
3

Ln

{
ω̃ − vFq

ω̃ + vFq

}]
.

σ̂xx(q, ω) =
3iNe2τ

4mτ

[
2ω̃

v2Fq
2
+
ω̃2 − v2Fq

2

v3Fq
3

Ln

{
ω̃ − vFq

ω̃ + vFq

}]
.

σ̂xx(q, ω) =
3σdc
4

i

τ

[
2ω̃

v2Fq
2
− v2Fq

2 − ω̃2

v3Fq
3

Ln

{
ω̃ − vFq

ω̃ + vFq

}]
.

Re-substituting ω̃ = ω + i
τ
and naming the transversal conductivity σ̂xx generally σ̂,

we obtain the result given in Equation (5.2.19):

σ̂(q, ω) =
3σdc
4

i

τ

[
2
ω + i/τ

v2Fq
2

−

(
1− (ω + i/τ)2 / (qvF)

2

qvF

)
Ln

{
ω̃ − vFq

ω̃ + vFq

}]
.

• p. 111: The expansion between Equation (5.2.20) and (5.2.21) contains a wrong
exponent. It should read:

Ln

{
ẑ + 1

ẑ − 1

}
= 2

(
1

ẑ
+

1

3ẑ3
+

1

5ẑ5

)
• p. 111: In footnote 2, the sine is missing in the numerator. It should read:∫ π

0

sinx

a+ b cosx
dx =

1

b
ln
a+ b

a− b

• p. 111, Equation (5.2.22): A factor of 1
τ
is too much. It should read:



σ̂(q, ω) ≈ 3πNe2

4qvFm

[
1− ω2

q2v2F
+ i

4ω

πqvF

]
• p. 117: In Figure 5.11, the equations in the two parabolas are incorrect, since ~ has
to be replaced with ~2. Hence they should read:

~ω =
~2

2m

(
q2 + 2qkF

)
~ω =

~2

2m

(
q2 − 2qkF

)
• p. 123, footnote 3 should read:

∫
dk

Θ(k− kF)

ω − q2 vF
2kF

− vF
kF
(k · q) + i

τ

=

∫ 2π

0

dϕ

∫ π

0

dθ

∫ kF

0

dkk2 sin θ
1

ω − q2 vF
2kF

− vF
kF
(kq cos θ) + i

τ

p. 111 footnote 2
= 2π

∫ kF

0

dkk2
1

− vF
kF
kq

Ln

(
ω − q2 vF

2kF
+ i

τ
− vF

kF
kq

ω − q2 vF
2kF

+ i
τ
+ vF

kF
kq

)

= − 2π

vFq
kF

∫ kF

0

dkkLn

(
ω + i

τ
− q2vF

2kF
− qvF

kF
k

ω + i
τ
− q2vF

2kF
+ qvF

kF
k

)

= − 2π

vFq
kF

∫ kF

0

kLn

ω +
i

τ
− q2vF

2kF︸ ︷︷ ︸
b

−qvF
kF︸ ︷︷ ︸
a

k

− kLn

ω +
i

τ
− q2vF

2kF︸ ︷︷ ︸
b

+
qvF
kF︸︷︷︸
−a

k

 dk

= − 2π

vFq
kF

∫ kF

0

kLn (b+ ak)− kLn (b− ak) dk

= − 2π

vFq
kF

[
b

2a
kF

�
�
��−1

4
k2F +

1

2

(
k2F − b2

a2

)
Ln (b+ akF) +

������1

2

b2

a2
Ln(b)+

+
b

2a
kF

�
�
��

+
1

4
k2F − 1

2

(
k2F − b2

a2

)
Ln (b− akF)

�������

−1

2

b2

a2
Ln(b)

]



= − 2π

vFq
kF

[
b

a
kF +

1

2

(
k2F − b2

a2

)
Ln

(
b+ akF
b− akF

)]

=
2π

vFq
k3F

[(
ω + i

τ

qvF
− q

2kF

)
+

1

2

((
ω + i

τ

qvF
− q

2kF

)2

− 1

)
Ln

(
q2vF
2kF

−
(
ω + i

τ

)
+ qvF

q2vF
2kF

−
(
ω + i

τ

)
− qvF

)]

Using D (εF) =
mkF
π2~2 , and vF = ~kF

m
results:

= 2π3D (εF) ~
kF
q

[(
ω + i

τ

qvF
− q

2kF

)
+

1

2

((
ω + i

τ

qvF
− q

2kF

)2

− 1

)
Ln

(
q2vF
2kF

−
(
ω + i

τ

)
+ qvF

q2vF
2kF

−
(
ω + i

τ

)
− qvF

)]

• p. 123, Equation (5.4.16): two i are missing. It should read:

χ̂(q, ω) = −e
2D (εF)

2

1 +
kF
2q

[
1−

(
q

2kF
−
ω + i

τ

qvF

)2
]
Ln


q

2kF
− ω+ i

τ

qvF
+ 1

q
2kF

− ω+ i

τ

qvF
− 1


+
kF
2q

[
1−

(
q

2kF
+
ω + i

τ

qvF

)2
]
Ln


q

2kF
+

ω+ i

τ

qvF
+ 1

q
2kF

+
ω+ i

τ

qvF
− 1




• p. 127, Equation (5.4.21): Two i are missing. It should read:

ϵ̂(q, ω) = 1 +
3ω2

p

q2v2F

1

2
+
kF
4q

[
1−

(
q

2kF
−
ω + i

τ

qvF

)2
]
Ln


q

2kF
− ω+ i

τ

qvF
+ 1

q
2kF

− ω+ i

τ

qvF
− 1


+
kF
4q

[
1−

(
q

2kF
+
ω + i

τ

qvF

)2
]
Ln


q

2kF
+

ω+ i

τ

qvF
+ 1

q
2kF

+
ω+ i

τ

qvF
− 1




• p. 133: The much smaller signs should be vice-versa. The text should say:
... quasi-static, limit for qvF ≫ ω screening becomes...
...but still qvF ≫ ω ...

• p. 167: In line 5, the sentence should read:
..., and thus delocalization occurs if the impurity concentration exceeds a certain
critical concentration.

• p. 246: In section 10.1.1, the Hagen-Rubens relation quoted in the text is incorrect.
It should read:

1−R(ω) ∝
√
ω

• p. 305: In Equation (12.1.8), there is a square root missing in the middle part. It
should read:

ω+
p =

(
4πNe2

mbϵ∞

) 1
2

=
ωp√
ϵ∞

(12.1.8)



• p. 319, line 6 from the bottom the sentence should read:
In this case the (originally) localized orbitals at energy position εd (or εf ) away from
the Fermi level are broadened, due to interaction with the conduction band; ...

• p. 323, after Equation (12.2.7):
It should read Fermi gas instead of Fermi glass

• p. 355, the chemical formula of cuprous oxide is Cu2O
This should be corrected in Fig. 13.11 and its caption as well as in the text below.

• p. 374, Figure 14.1 (a):
The x-axis should be labeled TC/T

• p. 383, line 15:
The equation referred to should read (12.2.14)

• p. 385, line 3 from the bottom, the sentence should read:
First, because the nodes in the gap extend to zero energy, ...

• p. 416: the second Equation in (B.24) contains an incorrect index; it should read:

t̂12 =
2N̂1

N̂1 + N̂2

• p. 444: Wrong reference:
[Mat58] is Phys. Rev. 111, 412 (1958)

• p. 459, Figure F.6: the equations in the two parabolas are incorrect, since ~ has to
be replaced with ~2. Hence they should read:

~ω =
~2

2m

(
q2 + 2qkF

)
~ω =

~2

2m

(
q2 − 2qkF

)


