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p. 2: The 4" equation should read:
€ij(q,w) = ¢;(q,w)

p. 27: In Equation (2.3.24) a factor of % is missing in the second line. Tt now reads
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p. 27: There is also a factor % missing in the equation two lines under Equation
(2.3.24):
1
P = 50’1E(2)

p. 33: 7" line from the bottom, it should read v instead of ¢,

p. 37: Equations (2.4.17) and (2.4.18) are incorrect; o, should be replaced by
(£ — 05). The correct formula (2.4.17) for the reflectivity then reads:
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The correct formula (2.4.18) for the phase shift is
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The derivation starts fraom Equation (2.4.15):
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and uses n(oy,09), k(o1,09) from Table 2.1 (u; = 1):




If we put the factor of 2 inside the square root given by the curled brackets { } and
arranging the prefactors as in the Book, this equation becomes
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Similar transformation have to be done for tan ¢,.
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p. 42, before Equation (2.4.23): The electric field is not normal but parallel to the
surface. Thus the sentence should read:

Zs was defined as the ratio of the electric field E parallel to the surface of a metal
to the total current density J induced in the material

p. 44: In Equation (2.4.28) the sign of the imaginary part has to be negative:
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p. 50, Equation (3.1.10) - (3.1.12)

The derivation of Equation (3.1.12) is not straight forward, since the previous Equa-
tion (3.1.10) is not fully correct. The displacement field D used in this equation has
to be redefined, but eventually cancels in Equation (3.1.11).

We start with Maxwell’s equations (2.2.7)
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E+ - =
V x +c@t 0
V- -B =0
c Ot c
V-D =47mp

and the material parameters (2.2.5)
D=¢E=(1+4nx.) E=E+47P,
and (2.26)
B=uH=(1+4nx,,)H=H+ 47M.

Now let us introduce a dielectric displacement D’ which also includes the change of
the magnetization:
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The Maxwell’s equations then become
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Let us now transform Maxwell’s equations to Fourier space

a4 x B(q,) - ~B(q,w) =0
q-B(q,w) =0
a4 Blaw +iZe (a,0) B(q,w) :4%3 (@.0) "
i1 (q,w) q - E(q,w) =4mp(q,w)

Let us start in a different way. We can split the tensor of the dielectric constant in
longitudinal and transverse components as done in (3.1.5)
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and similarly all other dielectric vectors (3.1.6). This procedure is interesting for the
dielectric displacement

q-D'(q,w qxD'(q,w
D' (q,w) = q§ >q+ q2( )><q-

With the help of the material equations we obtain

q-E(q,w)

qx E(q,w
D’ (qaw) = Ef (q,UJ) Tq—{—ﬁ? (q,w) #

Z X q.

This allows to simplify some of Maxwell’s equations, for example (3.1.9d):

el (q,w)q- E(q,w) = 47p (q,w)

since we can immediately calculate the scalar product which is only the longitudinal
component:

q-D'(qw) =€ (qw)q-E(q,w).



The other equations are given in (3.1.9):

w
q X E(q>w) - EB (q7w> =0
q-B(q,w) =0

4
iq x B (q,w) +i-D' (q,w) =—J (q,) (2)

Let us subtract Equations (1) from (2)

1 w w
il — x B(q,w)+i1i—D'(q,w) —i—¢ (q,w)E(q,w) =0
(1= o) axBlaw) + 12D (aw) - %0 (0w Bla.w

In the case of harmonic waves, the magnetic and electric fields are related by (2.2.17)

c
B(q,W) = ;q X E(qvw)
which we use for substitution of B
1 w? w?
l——— x|lgx E = —— E - =D
(1= s ) axlax Blaw] = - %a @e) Blaw) - 5D (@)

If we eventually split this equation in the longitudinal and the transverse components
of the vector and tensor, we arrive at (3.1.11)

[i_f <1 - i) +6 (q,w)} axlgxE(qw)]—e(qw)lqg-E(qw)]ag=

= ¢ (q,w)a x [ax E(q,w)] — ¢f (q.w)[a- E(q,w)]q,

which finally leads to (3.1.12)
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¢(1-0) =5 [ aw) - daw).

p. 72:
The Hamiltonian operator of Equation (4.1.1) describes the energy density per unit
volume. Thus it should be called Hamiltonian density.

p. 74, Equation (4.1.10) should read:
1 .
A(q) = Q/A(r) exp{—iq - r}dr

p. 88, line 3:
The Coulomb gauge should read VA = 0, as correctly given in Equation (2.1.6)

p. 95: In Equation (5.1.9) the sign of the denominator is incorrect. The formula



should read:
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p. 99, last line of the Figure caption:
The approximation shows deviations from the Drude model for frequencies above the
scattering rate -.

p. 110: The q = 0 limit calculation is wrong, but the result is correct. The complete
calculation reads:
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p. 111: The derivation of formula (5.2.19) is given here. Footnote 2 on p. 111 gives
the wrong integrals that are needed to obtain the result. So we give here the full
derivation. Starting from Equation (5.2.16):
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We align the E-field in x-direction. Thus the conductivity in the x direction is of
interest. We put q in the z-direction. Multiplying the nominator and denominator

with i/7 simplifies the equation. Besides, the integration is changed to an integration

over k via ,?—E = dk.
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%a yields:
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Transforming back to an integral over €, we can make use of the d-function behavior
of the Fermi-Dirac distribution f° at zero temperature.
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We can change the nominator and denominator in the logarithm argument according
to Ln (z) = —Ln (271), to:
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Re-substituting w = w + ﬁ and naming the transversal conductivity oy generally o,
we obtain the result given in Equation (5.2.19):
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e p. 111: The expansion between Equation (5.2.20) and (5.2.21) contains a wrong
exponent. It should read:
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e p. 111: In footnote 2, the sine is missing in the numerator. It should read:

T sinx 1, a+bd
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e p. 111, Equation (5.2.22): A factor of% is too much. Tt should read:
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e p. 117: In Figure 5.11, the equations in the two parabolas are incorrect, since A has
to be replaced with A%. Hence they should read:
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e p. 123, footnote 3 should read:

/ T U@(k kF) |

2T kF 1
:/ d¢/ de/ dek? sin 60—
w— @5t — &(
k

1L footn - 1 T
p. 111 footnote 2 27r/ Ak L 22kaF UF

. 2
9 o Wi e e
= T / dkkLn T Zke ke
Vrq 0 W‘f‘i—qu—f—quk

2kp

2 kp : 2 : 2
——ikF/ ko [w+— - L8 T b g [ - - L8 IF
0

— k| dk
Vrq T 2]€F kF T 2]€F * kF
———— —_———— =
b a b —a
2 ke
=" kg / kLn (b+ ak) — kLn (b — ak) dk
Urq 0




or  [b, 1 b b+ akp
= ke [k +- (2= )L
gt Lot 3 () ()

. . 2’0 i
() () (Bl
= — —T - — | — = - n ,
vpq ¢ qur 2kp 2 qug 2k q;T”FF — (w+1) — qur
Using D (er) = 4% and vp = ™ results:
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e p. 123, Equation (5.4.16): two i are missing. It should read:
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e p. 127, Equation (5.4.21): Two i are missing. It should read:
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e p. 133: The much smaller signs should be vice-versa. The text should say:
... quasi-static, limit for qup > w screening becomes...
..but still qup > w ...

e p. 167: In line 5, the sentence should read:

..., and thus delocalization occurs if the impurity concentration exceeds a certain
critical concentration.

e p. 246: In section 10.1.1, the Hagen-Rubens relation quoted in the text is incorrect.
It should read:

1 - Rw) x Vw

e p. 305: In Equation (12.1.8), there is a square root missing in the middle part. It
should read:
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p. 319, line 6 from the bottom the sentence should read:
In this case the (originally) localized orbitals at energy position ¢, (or €¢) away from
the Fermi level are broadened, due to interaction with the conduction band; ...

p. 323, after Equation (12.2.7):
It should read Fermi gas instead of Fermi glass

p. 355, the chemical formula of cuprous oxide is CuO
This should be corrected in Fig. 13.11 and its caption as well as in the text below.

p. 374, Figure 14.1 (a):
The z-axis should be labeled T¢/T

p. 383, line 15:
The equation referred to should read (12.2.14)

p. 385, line 3 from the bottom, the sentence should read:
First, because the nodes in the gap extend to zero energy, ...

p. 416: the second Equation in (B.24) contains an incorrect index; it should read:

. 2N,
t12 = =< =
Ny + No

p. 444: Wrong reference:
[Mat58] is Phys. Rev. 111, 412 (1958)

p. 459, Figure F.6: the equations in the two parabolas are incorrect, since h has to
be replaced with 2. Hence they should read:
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