Contact
+49 711 685 64944
+49 711 685 64886
Email
Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 3.554
Aniruddha Deshpande, Christian Prange, Uwe Rogge, Martin Dressel, Marc Scheffler
Tuning the superconducting dome in granular aluminum thin films
J. Appl. Phys.
137, 013902 (2025).
Cenk Beydeda, Konstantin Nikolaou, Marius Tochtermann, Nikolaj G. Ebensperger, Gabriele
Untereiner, Ahmed Farag, Philipp Karl, Monika Ubl, Harald Giessen, Martin Dressel, Marc Scheffler
Characterization of harmonic modes and parasitic resonances in multi-mode superconducting
coplanar resonators
AIP Advances
13, 105027 (2023).
Boglárka Tóth, Kirill Amelin, Toomas Rõõm, Urmas Nagel, Anastasia Bauernfeind, Vladimir Tsurkan,
Lilian Prodan, Hans-Albrecht Krug von Nidda, Marc Scheffler, István Kézsmárki, Sándor Bordács
Broadband magnetic resonance spectroscopy in MnSc
2S
4
Scientific Reports
13, 11069 (2023).
Markus Prinz-Zwick, Bertalan G. Szigeti, Thomas Gimpel, Dieter Ehlers, Vladimir Tsurkan, Andrey
O. Leonov, Björn Miksch, Marc Scheffler, Ioannis Stasinopoulos, Dirk Grundler, István Kézsmárki,
Norbert Büttgen, Hans-Albrecht Krug von Nidda
Nuclear and Electron Spin Resonance Studies on Skyrmion-Hosting Lacunar Spinels
Phys. Status Solidi B
259, 2100170 (2022).
Björn Miksch, Andrej Pustogow, Mojtaba Javaheri Rahim, Andrey A. Bardin, Kazushi Kanoda, John A.
Schlueter, Ralph Hübner, Marc Scheffler, Martin Dressel,
Gapped magnetic ground state in quantum spin liquid candidate κ-(BEDT-TTF)
2Cu
2(CN)
3
Science
372, 276 (2021).
Florian Meinert, Christian Hölzl, Mehmet Ali Nebioglu, Alessandro D’Arnese, Philipp Karl, Martin
Dressel, Marc Scheffler
Indium tin oxide films meet circular Rydberg atoms: Prospects for novel quantum simulation
schemes
Phys. Rev. Research
2, 023192 (2020).
Lars Wendel, Vincent T. Engl, Gabriele Untereiner, Nikolaj G. Ebensperger, Martin Dressel, Ahmed
Farag, Monika Ubl, Harald Giessen, Marc Scheffler
Microwave probing of bulk dielectrics using superconducting coplanar resonators in
distant-flip-chip geometry
Rev. Sci. Instrum.
91, 054702 (2020).
Björn Miksch, Martin Dressel, Marc Scheffler
Cryogenic frequency-domain electron spin resonance spectrometer based on coplanar waveguides
and field modulation
Rev. Sci. Instrum.
91, 025106 (2020).
Featured
Article of Review of Scientific Instruments.
Nikolaj G. Ebensperger, Benedikt Ferdinand, Dieter Koelle, Reinhold Kleiner, Martin Dressel,
Marc Scheffler
Characterizing dielectric properties of ultra-thin films using superconducting coplanar
microwave resonators
Rev. Sci. Instrum.
90, 114701 (2019).
Mario Zinßer, Katrin Schlegel, Martin Dressel, Marc Scheffler
Role of non-linear effects and standing waves in microwave spectroscopy: Corbino measurements
on superconductors and VO
2
Rev. Sci. Instrum.
90, 034704 (2019).
Desirée S. Rausch, Markus Thiemann, Martin Dressel, Daniel Bothner, Dieter Koelle, Reinhold
Kleiner, Marc Scheffler
Superconducting coplanar microwave resonators with operating frequencies up to 50 GHz
J. Phys. D: Appl. Phys.
51, 465301 (2018).
Sabine Ulrike Gerbersdorf, Silke Wieprecht, Moritz Thom, David M. Paterson, Marc Scheffler
New insights into MagPI: a promising tool to determine the adhesive capacity of biofilm on the
mesoscale
Biofouling
34, 618 (2018).
Markus Thiemann, Martin Dressel, Marc Scheffler
Complete electrodynamics of a BCS superconductor with μeV energy scales: Microwave spectroscopy
on titanium at mK temperatures
Phys. Rev. B
97, 214516 (2018).
Editor’s suggestion:
highlighted article.
Markus Thiemann, Manfred H. Beutel, Martin Dressel, Nicholas R. Lee-Hone, David M. Broun,
Evangelos Fillis-Tsirakis, Hans Boschker, Jochen Mannhart, Marc Scheffler
Single-gap superconductivity and dome of superfluid density in Nb-doped SrTiO
3
Phys. Rev. Lett.
120, 237002 (2018).
Linda Bondorf, Manfred Beutel, Markus Thiemann, Martin Dressel, Daniel Bothner, Jörg
Sichelschmidt, Kristin Kliemt, Cornelius Krellner, Marc Scheffler
Angle-dependent electron spin resonance of YbRh
2Si
2 measured with planar microwave resonators and in-situ rotation
Physica B
536, 331 (2018).
Tobias Wollandt, Markus Thiemann, Martin Dressel, Marc Scheffler
Superconducting stripline resonators at frequencies up to 50 GHz for microwave spectroscopy
applications
J. Phys.: Conf. Ser.
969, 012082 (2018).
Marc Scheffler, Markus Thiemann, Manfred Beutel, Uwe S. Pracht, Martin Dressel
One Kelvin means 21 GHz: Probing superconductors with low-frequency optics
42nd International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz), 2017
Uwe S. Pracht, Tommaso Cea, Nimrod Bachar, Guy Deutscher, Eli Farber, Martin Dressel, Marc
Scheffler, Claudio Castellani, Antonio M. García-García, Lara Benfatto
Optical signatures of the superconducting Goldstone mode in granular aluminum: Experiments and
theory
Phys. Rev. B
96, 094514 (2017).
Editor’s suggestion:
highlighted article.
Nikolaj G. Ebensperger, Markus Thiemann, Martin Dressel, Marc Scheffler
Superconducting Pb stripline resonators in parallel magnetic field and their application for
microwave spectroscopy
Supercond. Sci. Technol.
29, 115004 (2016).
Mojtaba Javaheri Rahim, Thomas Lehleiter, Daniel Bothner, Cornelius Krellner, Dieter Koelle,
Reinhold Kleiner, Martin Dressel, Marc Scheffler
Metallic coplanar resonators optimized for low-temperature measurements
J. Phys. D: Appl. Phys.
49, 395501 (2016).
Julian Simmendinger, Uwe S. Pracht, Lena Daschke, Thomas Proslier, Jeffrey A. Klug, Martin
Dressel, Marc Scheffler
Superconducting energy scales and anomalous dissipative conductivity in thin films of
molybdenum nitride
Phys. Rev. B
94, 064506 (2016).
Manfred H. Beutel, Nikolaj G. Ebensperger, Markus Thiemann, Gabriele Untereiner, Vincent Fritz,
Mojtaba Javaheri, Jonathan Nägele, Roland Rösslhuber, Martin Dressel, Marc Scheffler
Microwave study of superconducting Sn films above and below percolation
Supercond. Sci. Technol.
29, 085011 (2016).
Diana Geiger, Uwe S. Pracht, Martin Dressel, Jernej Mravlje, Melanie Schneider, Philipp
Gegenwart, Marc Scheffler
Terahertz conductivity of Sr
1-xCa
xRuO
3
Phys. Rev. B
93, 165131 (2016).
Uwe S. Pracht, Nimrod Bachar, Lara Benfatto, Guy Deutscher, Eli Farber, Martin Dressel, Marc
Scheffler
Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in
coupled aluminum nanograins
Phys. Rev. B
93, 100503(R) (2016).
Uwe S. Pracht, Julian Simmendinger, Martin Dressel, Ryota Endo, Tatsuya Watashige, Yousuke
Hanaoka, Masaaki Shimozawa, Takahito Terashima, Takasada Shibauchi, Yuji Matsuda, Marc Scheffler
Charge carrier dynamics of the heavy-fermion metal CeCoIn
5 probed by THz spectroscopy
J. Magn. Magn. Mater.
400, 31 (2016).
Wolfgang Voesch, Markus Thiemann, Daniel Bothner, Martin Dressel, Marc Scheffler
On-Chip ESR Measurements of DPPH at mK Temperatures
Physics Procedia
75, 503 (2015).
Katja Parkkinen, Martin Dressel, Kristin Kliemt, Cornelius Krellner, Christoph Geibel, Frank
Steglich, Marc Scheffler
Signatures of Phase Transitions in the Microwave Response of YbRh
2Si
2
Physics Procedia
75, 340 (2015).
Marc Scheffler, M. Maximilian Felger, Markus Thiemann, Daniel Hafner, Katrin Schlegel, Martin
Dressel, Konstantin S. Ilin, Michael Siegel, Silvia Seiro, Christoph Geibel, Frank Steglich
Broadband Corbino spectroscopy and stripline resonators to study the microwave properties of
superconductors
Acta IMEKO
4, 47 (2015).
Nabeel Aslam, Matthias Pfender, Rainer Stöhr, Philipp Neumann, Marc Scheffler, Hitoshi Sumiya,
Hiroshi Abe, Shinobu Onoda, Takeshi Ohshima, Junichi Isoya, Jörg Wrachtrup
Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave
resonators
Rev. Sci. Instrum.
86, 064704 (2015).
Yvonne Wiemann, Julian Simmendinger, Conrad Clauss, Lapo Bogani, Daniel Bothner, Dieter Koelle,
Reinhold Kleiner, Martin Dressel, Marc Scheffler
Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300
K using broadband metallic coplanar waveguides
Appl. Phys. Lett.
106, 193505 (2015).
Conrad Clauss, Martin Dressel, Marc Scheffler
Optimization of Coplanar Waveguide Resonators for ESR Studies on Metals
J. Phys.: Conf. Ser.
592, 012146 (2015).
N. Bachar, U. S. Pracht, E. Farber, M. Dressel, G. Deutscher, M. Scheffler
Signatures of Unconventional Superconductivity in Granular Aluminum
J. Low. Temp. Phys.
179, 83 (2015).
Daniel Sherman, Uwe S. Pracht, Boris Gorshunov, Shachaf Poran, John Jesudasan, Madhavi Chand,
Pratap Raychaudhuri, Mason Swanson, Nandini Trivedi, Assa Auerbach, Marc Scheffler, Aviad Frydman,
Martin Dressel
The Higgs mode in disordered superconductors close to a quantum phase transition
Nature Phys.
11, 188 (2015).
Siehe auch ‚News and Views‘ von Philip W. Anderson:
Superconductivity: Higgs, Anderson and all that,
Nature Phys.
11, 93 (2015).
Markus Thiemann, Daniel Bothner, Dieter Koelle, Reinhold Kleiner, Martin Dressel, Marc Scheffler
Niobium stripline resonators for microwave studies on superconductors
J. Phys.: Conf. Ser.
568, 022043 (2014).
Marc Scheffler, M. Maximilian Felger, Markus Thiemann, Daniel Hafner, Katrin Schlegel, Martin
Dressel, Konstantin S. Ilin, Michael Siegel, Silvia Seiro, Christoph Geibel, Frank Steglich
Measuring the microwave response of superconductors: broadband Corbino and resonant stripline
techniques
in:
Proceedings of the 20th
IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing,
Benevento, Italy, 2014, pp. 1025-1030.
Daniel Hafner, Martin Dressel, Oliver Stockert, Kai Grube, Hilbert v. Löhneysen, Marc Scheffler
Anomalous Microwave Surface Resistance of CeCu
6
JPS Conf. Proc.
3, 012016 (2014).
M. Schneider, D. Geiger, S. Esser, U. S. Pracht, C. Stingl, Y. Tokiwa, V. Moshnyaga, I. Sheikin,
J. Mravlje, M. Scheffler, P. Gegenwart
Low-Energy Electronic Properties of Clean CaRuO
3: Elusive Landau Quasiparticles
Phys. Rev. Lett.
112, 206403 (2014).
Daniel Hafner, Martin Dressel, Marc Scheffler
Surface-resistance measurements using superconducting stripline resonators
Rev. Sci. Instrum.
85, 014702 (2014).
M. Maximilian Felger, Martin Dressel, Marc Scheffler
Microwave resonances in dielectric samples probed in Corbino geometry: Simulation and
experiment
Rev. Sci. Instrum.
84, 114703 (2013).
Uwe S. Pracht, Eric Heintze, Conrad Clauss, Daniel Hafner, Roman Bek, David Werner, Sergey
Gelhorn, Marc Scheffler, Martin Dressel, Daniel Sherman, Boris Gorshunov, Konstantin S. Il’in,
Dagmar Henrich, Michael Siegel
Electrodynamics of the Superconducting State in Ultra-Thin Films at THz Frequencies
IEEE Trans. THz
Sci. Technol.
3, 269 (2013).
Conrad Clauss, Daniel Bothner, Dieter Koelle, Reinhold Kleiner, Lapo Bogani, Marc Scheffler,
Martin Dressel
Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar
waveguides
Appl. Phys. Lett.
102, 162601 (2013).
Marc Scheffler, Thomas Weig, Martin Dressel, Hiroaki Shishido, Yuta Mizukami, Takahito
Terashima, Takasada Shibauchi, Yuji Matsuda
Terahertz Conductivity of the Heavy-Fermion State in CeCoIn
5
J. Phys. Soc. Jpn.
82, 043712 (2013).
V. Guritanu, P. Wissgott, T. Weig, H. Winkler, J. Sichelschmidt, M. Scheffler, A. Prokofiev, S.
Kimura, T. Iizuka, A. M. Strydom, M. Dressel, F. Steglich, K. Held, S. Paschen
Anisotropic optical conductivity of the putative Kondo insulator CeRu
4Sn
6
Phys. Rev. B
87, 115129 (2013).
Marc Scheffler, Katrin Schlegel, Conrad Clauss, Daniel Hafner, Christian Fella, Martin
Dressel, Martin Jourdan, Jörg Sichelschmidt, Cornelius Krellner, Christoph Geibel, Frank Steglich
Microwave spectroscopy on heavy-fermion systems: Probing the dynamics of charges and magnetic
moments
Phys. Status Solidi B
250, 439 (2013).
Marc Scheffler, Christian Fella, Martin Dressel
Stripline resonators for cryogenic microwave spectroscopy on metals and superconductors
J. Phys.: Conf. Ser.
400, 052031 (2012).
Diana Geiger, Marc Scheffler, Martin Dressel, Melanie Schneider, Philipp Gegenwart
Broadband microwave study of SrRuO
3 and CaRuO
3 thin films
J. Phys.: Conf. Ser.
391, 012091 (2012).
Uwe S. Pracht, Marc Scheffler, Martin Dressel, David F. Kalok, Christoph Strunk, Tatyana I.
Baturina
Direct observation of the superconducting gap in a thin film of titanium nitride using
terahertz spectroscopy
Phys. Rev. B
86, 184503 (2012).
D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel,
M. Siegel
Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector
with reduced nitrogen content
J. Appl. Phys.
112, 074511 (2012).
D. Bothner, C. Clauss, E. Koroknay, M. Kemmler, T. Gaber, M. Jetter, M. Scheffler, P. Michler,
M. Dressel, D. Koelle, R. Kleiner
The phase boundary of superconducting niobium thin films with antidot arrays fabricated with
microsphere photolithography
Supercond. Sci. Technol.
25, 065020 (2012).
Katrin Steinberg, Marc Scheffler, Martin Dressel
Broadband microwave spectroscopy in Corbino geometry at
3He temperatures
Rev. Sci. Instrum.
83, 024704 (2012).
D. Bothner, C. Clauss, E. Koroknay, M. Kemmler, T. Gaber, M. Jetter, M. Scheffler, P. Michler,
M. Dressel, D. Koelle, R. Kleiner
Reducing vortex losses in superconducting microwave resonators with microsphere patterned
antidot arrays
Appl. Phys. Lett.
100, 012601 (2012).
Julia P. Ostertag, Marc Scheffler, Martin Dressel, Martin Jourdan
Terahertz conductivity of the heavy-fermion compound UNi
2Al
3
Phys. Rev. B
84, 035132 (2011).
Marc Scheffler, Eva Rose, Julia P. Ostertag, Karl Schrem, Katrin Steinberg, Martin Dressel,
Martin Jourdan
Magnetoresistance and Phase Diagram of Thin-Film UNi
2Al
3
J. Phys. Soc. Jpn.
80, SA015 (2011).
Katrin Steinberg, Marc Scheffler, Martin Dressel
Microwave inductance of thin metal strips
J. Appl. Phys.
108, 096102 (2010).
Marc Scheffler, Martin Dressel, Martin Jourdan
Microwave conductivity of heavy fermions in UPd
2Al
3
Eur. Phys. J. B
74, 331 (2010).
Marc Scheffler und Alexander Strahl
Faszination Regenbögen – Brücke zwischen Physik und Kultur?
PhyDid B – Didaktik der Physik –
Beiträge zur DPG-Frühjahrstagung, 2010 (ISSN 2191-379X).
Auch in:
„Licht und
lichtbasierte Technologien im Physikunterricht“, Sammelband zusammengestellt von der DPG
2015/2017 (ISBN 978-9818197-1-7)
Julia P. Ostertag, Marc Scheffler, Martin Dressel, Martin Jourdan
Observing the anisotropic optical response of the heavy-fermion compound UNi
2Al
3
Phys. Status Solidi B
247, 760 (2010).
Marc Scheffler, Martin Dressel, Martin Jourdan
Influence of impurity scattering on Drude response in heavy-fermion UPd
2Al
3
J. Phys.: Conf. Ser.
200, 012175 (2010).
Marc Scheffler, Stevan Nadj-Perge, Leo P. Kouwenhoven, Magnus T. Borgström, Erik P.A.M. Bakkers
Diameter-dependent conductance of InAs nanowires
J. Appl. Phys.
106, 124303 (2009).
Marc Scheffler, Julia P. Ostertag, Martin Dressel
Fabry-Perot resonances in birefringent YAlO
3 analyzed at terahertz frequencies
Opt. Lett.
34, 3520 (2009).
Marc Scheffler, Martin Dressel, Martin Jourdan
Low-temperature microwave response of heavy-fermion compounds
J. Phys.: Conf. Ser.
150, 042174 (2009).
Katrin Steinberg, Marc Scheffler, Martin Dressel
Quasiparticle response of superconducting aluminum to electromagnetic radiation
Phys. Rev. B
77, 214517 (2008).
Marc Scheffler, Stevan Nadj-Perge, Leo P. Kouwenhoven, Magnus T. Borgström, Erik P.A.M. Bakkers
Tunable double quantum dots in InAs nanowires
Physica E
40, 1202 (2008).
Marc Scheffler, Serife Kilic, Martin Dressel
Strip-shaped samples in a microwave Corbino spectrometer
Rev. Sci. Instrum.
78, 086106 (2007).
Marco Hering, Marc Scheffler, Martin Dressel, Hilbert v. Löhneysen
Signature of electronic correlations in the optical properties of the doped semiconductor
Si:P
Phys. Rev. B
75, 205203 (2007).
C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W.
Riess, B.J. Ohlsson, U. Gösele, L. Samuelson
Nanowire-based one-dimensional electronics
Materials Today
9 (10), 28 (2006).
Martin Dressel, Konstantin Petukhov, Marc Scheffler
Anisotropic SDW Dynamics in (TMTSF)
2PF
6
Journal of Low Temperature Physics
142, 133 (2006).
Martin Dressel, Kurt Laßmann, Marc Scheffler
Drudes Weg zur Festkörperphysik: Der Brückenschlag von der physikalischen Optik zur
Elektrodynamik der Festkörper
Physik
Journal
5 (7), 41 (2006).
Marc Scheffler, Martin Dressel, Martin Jourdan, Hermann Adrian
Dynamics of heavy fermions: Drude response in UPd
2Al
3 and UNi
2Al
3
Physica B
378-380, 993 (2006).
Martin Dressel, Marc Scheffler
Verifying the Drude response
Ann. Phys.
15, 535 (2006).
Marc Scheffler, Martin Dressel, Martin Jourdan, Hermann Adrian
Extremely slow Drude relaxation of correlated electrons
Nature
438, 1135 (2005).
Marc Scheffler, Martin Dressel
Broadband microwave spectroscopy in Corbino geometry for temperatures down to 1.7 K
Rev. Sci. Instrum.
76, 074702 (2005).
Marc Scheffler, Martin Dressel, Martin Jourdan, Hermann Adrian
Direct observation of Drude behavior in the heavy-fermion UPd
2Al
3 by broadband microwave spectroscopy
Physica B
359-361, 1150 (2005).
Marco Hering, Marc Scheffler, Martin Dressel, Hilbert v. Löhneysen
Crossover from Coulomb glass to Fermi glass in Si:P
Physica B
359-361, 1469 (2005).
Marc Scheffler
Broadband Microwave Spectroscopy on Correlated Electrons
Dissertation, Universität Stuttgart, 2004,
pdf-download.
Andrew Schwartz, Marc Scheffler, Steven M. Anlage
The frequency, temperature, and magnetic field dependence of ferromagnetic resonance and
anti-resonance in La
0.8Sr
0.2MnO
3
cond-mat/0010172
(2000).
Andrew Schwartz, Marc Scheffler, Steven M. Anlage
Determination of the magnetization scaling exponent for single-crystal La
0.8Sr
0.2MnO
3 by broadband microwave surface impedance measurements
Phys. Rev. B
61, R870 (2000).
Marc Scheffler
Broadband Microwave Surface Impedance Measurements on La
0.8Sr
0.2MnO
3
Master’s Thesis, University of Maryland, 1998.
Lecture: "Photons in matter" (winter term 2022/23)
In our research we try to understand the nature of a variety of unconventional materials. One example is superconductivity, but we also address other phenomena that occur at low temperatures, for example metals that drastically change their properties if one applies a magnetic field.
Probing solids with light is a powerful way to investigate their properties: Even with the human eye one can immediately distinguish between a metal, which is reflecting, and an insulator like glass, which is transparent. We follow a similar approach in our research, but we have to choose a different spectral range of light. The phenomena that we study are characterized by very low energy scales, such as the low temperatures that are required to exhibit these effects. Therefore, we use light of similarly low photon energies, meaning THz radiation and microwaves.
These experiments allow us to probe the fundamental behavior of charge carriers and spins that govern these various exotic states and to understand their underlying physical mechanisms.